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Outline of the talk:

e Maximum principle for a time-fractional diffusion equation with the
general fractional derivative

e Maximum principle for the weak solutions of a time-fractional diffusion
equation with the Caputo derivative

e Maximum principle for an abstract space- and time-fractional
evolution equation in the Hilbert space

e Short survey of other results
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1. Diffusion equation with the general fractional derivative

What is a maximum principle?

Maximum principle:
A function satisfies a differential inequality or equation in a domain D =
It achieves its maximum on the boundary of D.

A very elementary example:
f"(x) >0, x €]a, b[ and f € C([a, b]) =
f achieves its maximum value at one of the endpoints of the interval.

Other examples:

Maximum principles for ordinary differential equations and inequalities
Maximum principles for partial differential equations and inequalities
Very recently: maximum principles for fractional PDEs
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1. Diffusion equation with the general fractional derivative

General fractional derivatives

Let k be a nonnegative locally integrable function.

The general fractional derivative of the Caputo type:
t
(DS, F)(t) = /0 k(t — 7)f'(r) dr.
The general fractional derivative of the Riemann-Liouville type:
RL d [*
(]D(k)f)(t) = dt/o k(t — 7)f(7)dT.

For an absolutely continuous function f with the inclusion f' € LI°°(R..),
we get

(DG F)(2) = jt/o K(t—7)f(r)dr — k(£)f(0) = (DESF)(t) — k()F(0)
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1. Diffusion equation with the general fractional derivative

Particular cases

1) The conventional Caputo and Riemann-Liouville fractional derivatives:

7_701

k(T):m,0<a<1.

©E0)(0) = Frry [, (=P () o

@00 = & (e [ -y ar).
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1. Diffusion equation with the general fractional derivative

Particular cases

2) The multi-term derivatives

k(T):;akr(l—ak)’ O<ap <---<ap<l1
(DG () = a(DF)(t),
k=1
(DESO(E) =D a(D*F)(t).
k=1
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1. Diffusion equation with the general fractional derivative

Particular cases

3) Derivatives of the distributed order:

1 T
k(7) :/0 mdl)(a)v

where p is a Borel measure on [0, 1]:

1
(DS, ) = /0 (D2F)(t) dp(a).

1
(DS, f) = /0 (D*F)(t) dp(a).
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1. Diffusion equation with the general fractional derivative

Conditions on the kernel function

K1) The Laplace transform k of k,

exists for all p > 0,
K2) k(p) is a Stiltjes function,
K3) k(p) — 0 and pk(p) — oo as p — oo,

K4) k(p) — oo and pk(p) — 0 as p — 0.
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1. Diffusion equation with the general fractional derivative

Properties of the general derivatives

(A) For any A > 0, the initial value problem for the fractional relaxation
equation
(]D)(Ck)f)(t) =—X(t), t>0, u(0)=1

has a unique solution uy = uy(t) that belongs to the class C*°(Ry) and is
a completely monotone function.

(B) There exists a completely monotone function x = x(t) with the
property

t
/ k(t —71)s(t)dr =1, t>0.
0
(C) For f € LI°°(R..), the relations

(DG Zuy () = F(8), (D§ZaF)(E) = £(1)
hold true, where the general fractional integral Z(,) is defined by the
formula

(I(k)f)(t):/o k(t —7)f(7) dT.
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1. Diffusion equation with the general fractional derivative

General time-fractional diffusion equation

Let Q be an open and bounded domain in R" with a smooth boundary 02
(for example, of C? class) and T > 0.

The general time-fractional diffusion equation:
(D(yu(x; ))(8) = Da(u)+ D1 (u) = g(x)u(x, t)+F(x, t), (x,t) € Qx(0, T],
where g € C(Q), g(x) >0, x € Q,

Zb (W)= a2
8x, LT Ox;0x;

ij=1

and D, is a uniformly elliptic differential operator.
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1. Diffusion equation with the general fractional derivative

Cauchy problem

Kochubei considered the Cauchy problem with the initial condition
u(x,0) = ug(x),x € R"

for the homogeneous general time-fractional diffusion equation with
D,=A, Dy =0and g=0.

His main results:

1) The Cauchy problem has a unique appropriately defined solution for a
bounded globally Holder continuous initial value wup.

2) The fundamental solution to the Cauchy problem can be interpreted as
a probability density function and thus the general time-fractional diffusion
equation describes a kind of (anomalous) diffusion.
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1. Diffusion equation with the general fractional derivative

Initial-boundary-value problem

Luchko and Yamamoto: Analysis of uniqueness and existence of solution to
the initial-boundary-value problem for the general time-fractional diffusion
equation with the initial condition

u(x, t)‘t:O = up(x), x € Q
and the Dirichlet boundary condition

u(x, t)]| =v(x,t), (x,t) € 92 x (0, T].

(x,t)€0Qx(0,T]

Their main results:
1) Uniqueness of solution both in the strong and in the weak senses
(Estimates of the general fractional derivatives —> Maximum principle for
the general diffusion equation —> A priory norm estimates of solutions —>
Uniqueness of solutions).
2) Existence of solution in the weak sense (Separation of variables —>
Formal solutions in form of generalized Fourier series —> Convergence
analysis of the formal solutions).
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1. Diffusion equation with the general fractional derivative

Estimates of the general fractional derivatives

Let the conditions
L1) k € CY(Ry) N LPe(Ry),
L2) k() > 0 and k(1) < 0 for 7 > 0,

L3) k(7) = o(t7 1), 7 — 0.
be fulfilled.

Let a function f € C([0, T]) attain its maximum over the interval [0, T] at
the point ty, to € (0, T], and " € C(0, T] N L1(0, T). Then the following
inequalities hold true:

(D{if)(t0) = k(o) (to),

(DG f)(t0) = K(to)(f(to) — £(0)) = 0.
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. Diffusion equation with the general fractional derivative

Maximum principle

Let us define the operator

Poy(u) == (D((';()f)(t) — Do(u) — Dy (u) + g(x)u(x, t).

Let the conditions L1)-L3) be fulfilled and a function u satisfy the inequality

P(k)(u) <0, (x,t) € 2 x (0, T].

Then the following maximum principle holds true:

max u(x, t) < max{maxu(x,0), max u(x, t), 0}.
(x,t)e Ox[0,T] xeQ (x,t)€ OQx[0,T]
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. Diffusion equation with the general fractional derivative

A priori norm estimates

Let the conditions K1)-K4) and L1)-L3) be fulfilled and v be a solution of
the initial-boundary-value problem for the general diffusion equation.

Then the following estimate of the uniform solution norm holds true:

lull c@xo, ) < max{Mo, Mi}+ MF(T),

where

Mo = [luol[c(q): M1 = lIVlicoaxio,my)s M = [IFllc@xo, 1))

and

f(t):/ot/i(T)dT, /Otk(t—T)n(T)dT —1, >0,

Yuri Luchko (BHT Berlin) Maximum principle June 21, 2018 15 / 33



-

. Diffusion equation with the general fractional derivative

Uniqueness of the solution

The initial-boundary-value problem for the general diffusion equation
equation possesses at most one solution.

This solution continuously depends on the problem data in the sense that if
u and i solutions to the problems with the sources functions F and F and
the initial and boundary conditions ug and iy and v and V, respectively, and

IF = Fllc@xpo, ) < &

|uo — dollc(q) < €0, [Iv — ¥llcoaxp, 1)) < €1,
then the following norm estimate holds true:
lu = il c(ixgo, ) < max{eo,e1} +€ef(T)
with

f(t):/o w(r) dr, /Ok(t—T)/-i(T)dT —1 t>0.
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1. Diffusion equation with the general fractional derivative

Literature
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2. Diffusion equation with the Caputo derivative

Single-term time-fractional diffusion equation

Initial-boundary-value problem:

Za a;(x)dju(x, t))+c(x)u(x, t)+F(x,t), x € QC R, t > C
ij=1

u(x,t) =0, x €0, t>0,
u(x,0) = a(x), x €

with 0 < a < 1 and in a bounded domain Q with a smooth boundary 0.
In what follows, we always suppose that the spatial differential operator is a
uniformly elliptic one.
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2. Diffusion equation with the Caputo derivative
Weak solution in the fractional Sobolev space
For u € CL[0, T], the Caputo fractional derivative is defined by

t
Pou(x, t) = — )/0 (t — $)*Dsu(x,s)ds, x € Q.

Ml—a

Recently, the Caputo fractional derivative 0¢ was extended to an operator
defined on the closure H,(0, T) of ¢C*[0, T] := {u € C[0, T]; u(0) = 0}
in the fractional Sobolev space H*(Q2).

In what follows, we interpret Ofu as this extension with the domain
H,(0,T).

Thus we interpret the problem under consideration as the fractional
diffusion equation subject to the inclusions

u(-,t) € H3(Q), t>0,
{ u(x,-) —a(x) € Hy(0, T), xeQ.
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2. Diffusion equation with the Caputo derivative

Results regarding the maximum principle

Luchko: Maximum principle for the strong solution under the assumption

c(x) <0, xeqQ.

Luchko and Yamamoto: Maximum principle for the weak solution in the
case ¢ € C(Q2) without the non-negativity condition c(x) <0, x € Q.
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2. Diffusion equation with the Caputo derivative

Consequences from the maximum principle

Let us now denote the solution to the initial-boundary value problem for
the fractional diffusion equation by u, r.
1) Non-negativity property:

Let a € L?(Q) and F € L?(Q2 x (0, T)). If F(x,t) >0 a.e. (almost
everywhere) in Q x (0, T) and a(x) > 0 a.e. in Q, then u, r(x,t) >0 a.e.
in Q2 x (0, 7).

2) Comparison property:

Let a1, a2 € L2(Q) and Fi, F> € L?(Q x (0, T)) satisfy the inequalities
ai(x) > ax(x) a.e. in Q and Fi(x,t) > Fa(x,t) a.e. in Q2 x (0, T),
respectlvely. Then uy, £ (X, t) > Uay r(x, t) a.e. in Q x (0, T).
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2. Diffusion equation with the Caputo derivative

Comparison property regarding the coefficient ¢ = ¢(x)

Let us now fix a source function F = F(x,t) > 0 and an initial condition
a = a(x) > 0 and denote by u. = uc(x, t) the weak solution to the
time-fractional diffusion equation with the coefficient ¢ = ¢(x).

Then the following comparison property is valid:

Let c1, ¢ € C(Q) satisfy the inequality ¢i(x) > c2(x) in Q. Then
Ue, (X, t) > ugy(x, t) in Q2 x (0, T).
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2. Diffusion equation with the Caputo derivative

Positivity property

Conditions:

1) the initial condition a € L2(Q), a>0, a# 0 a.e. in Q,
2) the weak solution u belongs to C((0, T]; C(Q2)),

3) the source function is identically equal to zero, i.e.,
F(x,t) =0, x€Q, t>0.

Then the weak solution v is strictly positive:

u(x,t) >0, x€Q,0<t<T.
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2. Diffusion equation with the Caputo derivative
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3. Abstract time- and space-fractional diffusion equation

Abstract time- and space-fractional diffusion equation

Let X be a Hilbert space over R with the scalar product (-,-). For
0 < a, 8 < 1, we consider the following evolution equation in the Hilbert
space X:

D&u(t) = —(=A)Pu in X, t>0

along with the initial condition

u(0) =ae X.
Assumptions: the operator A is self-adjoint, has compact resolvent, and
(—00,0] C p(—A), p(—A) being the resolvent of —A.

We note that u(-, t) := u(t) € D((—A)?) for t > 0 and so a boundary
condition is incorporated into the equation.
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3. Abstract time- and space-fractional diffusion equation

Non-negativity property

For 0 < «, B < 1, let us denote a solution to the abstract time- and
space-fractional diffusion equation by u, 5(t).

If a>0in Q, then uyg(-,t) > 0in Q for t > 0.
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3. Abstract time- and space-fractional diffusion equation

Sketch of the proof

The main idea is first to prove non-negativity of u, g in the case o =1

(space-fractional equation) and then to extend this result for the general
case.

We start with the following important result:

up (-, t) >0in Qfor t >0if a>0in Q.
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3. Abstract time- and space-fractional diffusion equation

Sketch of the proof

Ingredients for the proof:
1) Integral representation

_ (—A+up)ta
A 4 1)1 :smﬂﬁ/ d x
(A7 +1)"a 2B+2u5cos7rﬂ+1 pooac

2) Maximum principle for A=> (=A+u)ta>0fory>0and a>0in
Q.

3)u?? +2uP cosmf+1>0for u>0and 0 < 3 < 1.

Hence
1+ (A ta>0 if a(x)>0, xeQ.

Then
¢

i 5 8) = et = fim (14 2(—A)5) a>0.

{—00
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3. Abstract time- and space-fractional diffusion equation

Sketch of the proof
Let 0 < o, < 1. Then

Ug (X, t) = /0 So(n)un g(x, t*n)dn, xe€Q,t>0

with

N (=)
Pal) = Kz_; M(—al+1— )

being a particular case of the Wright function (also known as the Mainardi
function).

Because uy g(x,t) > 0 for x € Q and t > 0 for a > 0 and
®,(n) >0, n>0
we get the inequality
Ugp(x,t) >0, xeQ, t>0.
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4. Short survey of other results
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4. Short survey of other results

Some of other results
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4. Short survey of other results

Some of other results
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Thank you very much for your attention!

(DS, F)(t) = /Ot K(t — 7)f(7) dr

Questions and comments are welcome!

Yuri Luchko (BHT Berlin) Maximum principle June 21, 2018

33 /33



	1. Diffusion equation with the general fractional derivative
	2. Diffusion equation with the Caputo derivative
	3. Abstract time- and space-fractional diffusion equation
	4. Short survey of other results
	 

